viernes, 12 de junio de 2015

Ley de gravitación universal.
La ley de gravitación universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. 

Ésta fue presentada por Isaac Newton en su libro philosophoiac naturalis principia matemática, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. Para grandes distancias de separación entre cuerpos se observa que dicha fuerza actúa de manera muy aproximada como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro de gravedad, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.


Así, con todo esto resulta que la ley de la gravitación universal predice que la fuerza ejercida entre dos cuerpos de masas m_{1} y m_{2} separados una distancia r es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:
F = G \frac {m_{1}m_{2}} {r^2}
donde


F\, es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
G\, es la constante de gravitación universal.
Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán.

El valor de esta constante de Gravitación Universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión. En 1798 se hizo el primer intento de medición(véase el experimento de Cavendish) y en la actualidad, con técnicas mucho más precisas se ha llegado a estos resultados:

G = 6.67384(80) \times 10^{-11} \ \mbox{N} \ \mbox{m}^2 \ \mbox{kg}^{-2}

En unidades del Sistema Internacional.
Esta ley recuerda mucho a la forma de la ley de Coulomb para las fuerzas electrostáticas, ya que ambas leyes siguen una ley de la inversa del cuadrado (es decir, la fuerza decae con el cuadrado de la distancia) y ambas son proporcionales al producto de magnitudes propias de los cuerpos (en el caso gravitatorio de sus masas y en el caso electrostático de su carga eléctrica).


Leyes de Newton.


AUTOR:RONANGEL ARTIGAS
Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular, aquellos relativos al movimiento de los cuerpos. 



En concreto, la relevancia de estas leyes radica en dos aspectos:
  • Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica. 

  •  Por otro, al combinar estas leyes con la ley de la gravitación universal, se pueden deducir y explicar las leyes de Kepler sobre el movimiento planetario.

Así, las leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
autor: lisi valderrama


La dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales (que se mueven a velocidad constante; la Tierra, aunque gire y rote, se trata como tal a efectos de muchos experimentos prácticos).

 Solo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300 000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.


Fundamentos de las leyes.

AUTOR:GÉNESIS VALERA
El primer concepto que maneja es el de masa, que identifica con (cantidad de materia). La importancia de esta precisión está en que permite prescindir de toda cualidad que no sea física-matemática a la hora de tratar la dinámica de los cuerpos. Con todo, utiliza la idea de éter para poder mecanizar todo aquello no reducible a su concepto de masa.
Newton no asume que la cantidad de movimiento es el resultado del producto de la masa por la velocidad, y define dos tipos de fuerzas: la vis insita, que es proporcional a la masa y que refleja la inercia de la materia, y la vis impressa (momento de fuerza), que es la acción que cambia el estado de un cuerpo, sea cual sea ese estado; la vis impressa, además de producirse por choque o presión, puede deberse a la vis centrípeta (fuerza centrípeta), una fuerza que lleva al cuerpo hacia algún punto determinado.
A diferencia de las otras causas, que son acciones de contacto, la vis centrípeta es una acción a distancia. En esta distingue Newton tres tipos de cantidades de fuerza: una absoluta, otra aceleradora y, finalmente, la motora, que es la que interviene en la ley fundamental del movimiento.
En tercer lugar, precisa la importancia de distinguir entre lo absoluto y relativo siempre que se hable de tiempo, espacio, lugar o movimiento.
En este sentido, Newton, que entiende el movimiento como una traslación de un cuerpo de un lugar a otro, para llegar al movimiento absoluto y verdadero de un cuerpo.

las leyes de Newton.

Primera ley de Newton o ley de la inercia

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo solo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
 
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.


AUTOR:OSWAR FLORES
Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. 
Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.


Segunda ley de Newton o ley de fuerza.

La segunda ley del movimiento de Newton dice:
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

autor:lizzie nuñez
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.

En la mayoría de las ocasiones hay más de una fuerza actuando sobre un objeto, en este caso es necesario determinar una sola fuerza equivalente ya que de ésta depende la aceleración resultante. Dicha fuerza equivalente se determina al sumar todas las fuerzas que actúan sobre el objeto y se le da el nombre de fuerza neta.7
En términos matemáticos esta ley se expresa mediante la relación:
\mathbf{F}_{\text{net}} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t}
Donde:
\mathbf{p} es el momento lineal
\mathbf{F}_{\text{net}} la fuerza total o fuerza resultante.
Suponiendo que la masa es constante y que la velocidad es muy inferior a la velocidad de la luzb la ecuación anterior se puede reescribir de la siguiente manera:
Sabemos que \mathbf{p} es el momento lineal, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.
\mathbf{F}_{\text{net}} = {\mathrm{d}(m\mathbf{v}) \over \mathrm{d}t}
Consideramos a la masa constante y podemos escribir   {\mathrm{d}\mathbf{v} \over \mathrm{d}t}=\mathbf{a} aplicando estas modificaciones a la ecuación anterior:
\mathbf{F} = m\mathbf{a}
AUTOR: RONANGEL ARTIGAS
La fuerza es el producto de la masa por la aceleración, que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre \mathbf{F} y \mathbf{a}. Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.

De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).

Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.


 autores del vídeo : Roy Perez , Ronangel A , Igdamaris M , Lisi V(voz) ,                   Cristhofer B(edición) 

Tercera ley de Newton o principio de acción y reacción

la tercera ley de movimiento de Newton expresa que:

Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

 

La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.8 Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.
 
autor: igdamaris moscan
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".




Es importante observar que este principio relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.

trabajo y energía.

 trabajo:


En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo de manera acelerada. El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.
Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW. y esta sedivide en tres tipo:

El trabajo en mecánica.

Trabajo de una fuerza. Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r) y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,
autor:ronangel artigas
Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma
\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = 
\mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s =
(F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,
donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.
El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.
Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea
W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,
Esto es, el trabajo viene dado por la integral curvilínea de \mathbf F a lo largo de la curva C que une los dos puntos; en otras palabras, por la circulación de \mathbf F sobre la curva C entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf F sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.

 Trabajo y energía cinética.

Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es válida la siguiente expresión:
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}
Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la variación de energía cinética:
W = \int \mathbf{F}\cdot\mathbf{v} \mathrm{d}t
= \int \mathbf{F}\cdot \mathrm{d}\mathbf{r}
= \int \mathbf{v}\cdot\mathrm{d}\mathbf{p} =  \Delta E_c

Trabajo y energía cinética

Para el caso de una partícula tanto en mecánica clásica como en mecánica relativista es válida la siguiente expresión:
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}
Multiplicando esta expresión escalarmente por la velocidad e integrando respecto al tiempo se obtiene que el trabajo realizado sobre una partícula (clásica o relativista) iguala a la variación de energía cinética:
W = \int \mathbf{F}\cdot\mathbf{v} \mathrm{d}t
= \int \mathbf{F}\cdot \mathrm{d}\mathbf{r}
= \int \mathbf{v}\cdot\mathrm{d}\mathbf{p} =  \Delta E_c

energía.

En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla y darle un uso industrial o económico.
autor: roy perez


Transformación de la energía.
Para la optimización de recursos y la adaptación a nuestros usos, necesitamos transformar unas formas de energía en otras. Todas ellas se pueden transformar en otra cumpliendo los siguientes principios termodinámicos:
  • “La energía no se crea ni se destruye; solo se transforma”. De este modo, la cantidad de energía inicial es igual a la final.
  •  
  • “La energía se degrada continuamente hacia una forma de energía de menor calidad (energía térmica)”. Dicho de otro modo, ninguna transformación se realiza con un 100 % de rendimiento, ya que siempre se producen unas pérdidas de energía térmica no recuperable. El rendimiento de un sistema energético es la relación entre la energía obtenida y la que suministramos al sistema.
Unidades de medida de energía.
La unidad de energía definida por el Sistema Internacional de Unidades es el julio, que se define como el trabajo realizado por una fuerza de un newton en un desplazamiento de un metro en la dirección de la fuerza, es decir, equivale a multiplicar un Newton por un metro. Existen muchas otras unidades de energía, algunas de ellas en desuso.